Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 6(3): e0047921, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34160242

RESUMO

Coinfection by heterologous viruses in the respiratory tract is common and can alter disease severity compared to infection by individual virus strains. We previously found that inoculation of mice with rhinovirus (RV) 2 days before inoculation with a lethal dose of influenza A virus [A/Puerto Rico/8/34 (H1N1) (PR8)] provides complete protection against mortality. Here, we extended that finding to a second lethal respiratory virus, pneumonia virus of mice (PVM), and analyzed potential mechanisms of RV-induced protection. RV completely prevented mortality and weight loss associated with PVM infection. Major changes in host gene expression upon PVM infection were delayed compared to PR8. RV induced earlier recruitment of inflammatory cells, which were reduced at later times in RV-inoculated mice. Findings common to both virus pairs included the upregulated expression of mucin-associated genes and dampening of inflammation-related genes in mice that were inoculated with RV before lethal virus infection. However, type I interferon (IFN) signaling was required for RV-mediated protection against PR8 but not PVM. IFN signaling had minor effects on PR8 replication and contributed to controlling neutrophilic inflammation and hemorrhagic lung pathology in RV/PR8-infected mice. These findings, combined with differences in virus replication levels and disease severity, suggest that the suppression of inflammation in RV/PVM-infected mice may be due to early, IFN-independent suppression of viral replication, while that in RV/PR8-infected mice may be due to IFN-dependent modulation of immune responses. Thus, a mild upper respiratory viral infection can reduce the severity of a subsequent severe viral infection in the lungs through virus-dependent mechanisms. IMPORTANCE Respiratory viruses from diverse families cocirculate in human populations and are frequently detected within the same host. Although clinical studies suggest that infection by multiple different respiratory viruses may alter disease severity, animal models in which we can control the doses, timing, and strains of coinfecting viruses are critical to understanding how coinfection affects disease severity. Here, we compared gene expression and immune cell recruitment between two pairs of viruses (RV/PR8 and RV/PVM) inoculated sequentially in mice, both of which result in reduced severity compared to lethal infection by PR8 or PVM alone. Reduced disease severity was associated with suppression of inflammatory responses in the lungs. However, differences in disease kinetics and host and viral gene expression suggest that protection by coinfection with RV may be due to distinct molecular mechanisms. Indeed, we found that antiviral cytokine signaling was required for RV-mediated protection against lethal infection by PR8 but not PVM.


Assuntos
Coinfecção/imunologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Rhinovirus/patogenicidade , Animais , Coinfecção/virologia , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Pneumonia Murina/imunologia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/prevenção & controle , Índice de Gravidade de Doença , Transcriptoma , Replicação Viral
2.
Sci Rep ; 6: 38139, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905537

RESUMO

Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.


Assuntos
Interferons/metabolismo , Vírus da Pneumonia Murina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/genética , Redes e Vias Metabólicas/imunologia , Camundongos , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Proteólise , Infecções por Vírus Respiratório Sincicial/etiologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , Proteínas não Estruturais Virais/genética
3.
J Virol ; 87(17): 9949-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824814

RESUMO

The paramyxovirus pneumonia virus of mice (PVM) is a rodent model of human respiratory syncytial virus (hRSV) pathogenesis. Here we characterized the PVM-specific CD8(+) T-cell repertoire in susceptible C57BL/6 mice. In total, 15 PVM-specific CD8(+) T-cell epitopes restricted by H-2D(b) and/or H-2K(b) were identified. These data open the door for using widely profiled, genetically manipulated C57BL/6 mice to study the contribution of epitope-specific CD8(+) T cells to PVM pathogenesis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Vírus da Pneumonia Murina/imunologia , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Mapeamento de Epitopos , Epitopos de Linfócito T/genética , Antígenos H-2/metabolismo , Antígeno de Histocompatibilidade H-2D/metabolismo , Humanos , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia
4.
Virology ; 443(2): 257-64, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23763766

RESUMO

A previous report of a novel pneumovirus (PnV) isolated from the respiratory tract of a dog described its significant homology to the rodent pathogen, pneumonia virus of mice (PVM). The original PnV-Ane4 pathogen replicated in and could be re-isolated in infectious state from mouse lung but elicited minimal mortality compared to PVM strain J3666. Here we assess phylogeny and physiologic responses to 10 new PnV isolates. The G/glycoprotein sequences of all PnVs include elongated amino-termini when compared to the characterized PVMs, and suggest division into groups A and B. While we observed significant differences in cytokine production and neutrophil recruitment to the lungs of BALB/c mice in response to survival doses (50 TCID50 units) of representative group A (114378-10-29-KY-F) and group B (7968-11-OK) PnVs, we observed no evidence for positive selection (dN > dS) among the PnV/PnV, PVM/PnV or PVM/PVM G/glycoprotein or F/fusion protein sequence pairs.


Assuntos
Evolução Molecular , Inflamação/patologia , Infecções por Pneumovirus/patologia , Pneumovirus/classificação , Pneumovirus/patogenicidade , Sequência de Aminoácidos , Animais , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inflamação/imunologia , Inflamação/virologia , Pulmão/imunologia , Pulmão/patologia , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/patogenicidade , Filogenia , Pneumovirus/genética , Infecções por Pneumovirus/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
J Allergy Clin Immunol ; 131(5): 1331-9.e10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23561801

RESUMO

BACKGROUND: Respiratory tract viruses are a major environmental risk factor for both the inception and exacerbations of asthma. Genetic defects in Toll-like receptor (TLR) 7-mediated signaling, impaired type I interferon responses, or both have been reported in asthmatic patients, although their contribution to the onset and exacerbation of asthma remains poorly understood. OBJECTIVE: We sought to determine whether Pneumovirus infection in the absence of TLR7 predisposes to bronchiolitis and the inception of asthma. METHODS: Wild-type and TLR7-deficient (TLR7(-/-)) mice were inoculated with the rodent-specific pathogen pneumonia virus of mice at 1 (primary), 7 (secondary), and 13 (tertiary) weeks of age, and pathologic features of bronchiolitis or asthma were assessed. In some experiments infected mice were exposed to low-dose cockroach antigen. RESULTS: TLR7 deficiency increased viral load in the airway epithelium, which became sloughed and necrotic, and promoted an IFN-α/ß(low), IL-12p70(low), IL-1ß(high), IL-25(high), and IL-33(high) cytokine microenvironment that was associated with the recruitment of type 2 innate lymphoid cells/nuocytes and increased TH2-type cytokine production. Viral challenge of TLR7(-/-) mice induced all of the cardinal pathophysiologic features of asthma, including tissue eosinophilia, mast cell hyperplasia, IgE production, airway smooth muscle alterations, and airways hyperreactivity in a memory CD4(+) T cell-dependent manner. Importantly, infections with pneumonia virus of mice promoted allergic sensitization to inhaled cockroach antigen in the absence but not the presence of TLR7. CONCLUSION: TLR7 gene defects and Pneumovirus infection interact to establish an aberrant adaptive response that might underlie virus-induced asthma exacerbations in later life.


Assuntos
Asma/imunologia , Asma/patologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Vírus da Pneumonia Murina , Infecções por Pneumovirus/complicações , Receptor 7 Toll-Like/deficiência , Receptor 7 Toll-Like/genética , Animais , Animais Recém-Nascidos , Asma/etiologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Carga Viral
6.
J Virol ; 86(10): 5829-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438539

RESUMO

Pneumonia virus of mice (PVM), a relative of human respiratory syncytial virus (RSV), causes respiratory disease in mice. There is serologic evidence suggesting widespread exposure of humans to PVM. To investigate replication in primates, African green monkeys (AGM) and rhesus macaques (n = 4) were inoculated with PVM by the respiratory route. Virus was shed intermittently at low levels by a subset of animals, suggesting poor permissiveness. PVM efficiently replicated in cultured human cells and inhibited the type I interferon (IFN) response in these cells. This suggests that poor replication in nonhuman primates was not due to a general nonpermissiveness of primate cells or poor control of the IFN response. Seroprevalence in humans was examined by screening sera from 30 adults and 17 young children for PVM-neutralizing activity. Sera from a single child (6%) and 40% of adults had low neutralizing activity against PVM, which could be consistent with increasing incidence of exposure following early childhood. There was no cross-reaction of human or AGM sera between RSV and PVM and no cross-protection in the mouse model. In native Western blots, human sera reacted with RSV but not PVM proteins under conditions in which AGM immune sera reacted strongly. Serum reactivity was further evaluated by flow cytometry using unfixed Vero cells infected with PVM or RSV expressing green fluorescent protein (GFP) as a measure of viral gene expression. The reactivity of human sera against RSV-infected cells correlated with GFP expression, whereas reactivity against PVM-infected cells was low and uncorrelated with GFP expression. Thus, PVM specificity was not evident. Our results indicate that the PVM-neutralizing activity of human sera is not due to RSV- or PVM-specific antibodies but may be due to low-affinity, polyreactive natural antibodies of the IgG subclass. The absence of PVM-specific antibodies and restriction in nonhuman primates makes PVM unlikely to be a human pathogen.


Assuntos
Vírus da Pneumonia Murina/fisiologia , Infecções por Pneumovirus/virologia , Replicação Viral , Adulto , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Pré-Escolar , Chlorocebus aethiops , Proteção Cruzada , Feminino , Humanos , Lactente , Macaca mulatta , Masculino , Camundongos , Vírus da Pneumonia Murina/imunologia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/fisiologia , Adulto Jovem
7.
J Immunol ; 188(4): 1924-32, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22238461

RESUMO

IL-21 is a cytokine with pleiotropic actions, promoting terminal differentiation of B cells, increased Ig production, and the development of Th17 and T follicular helper cells. IL-21 is also implicated in the development of autoimmune disease and has antitumor activity. In this study, we investigated the role of IL-21 in host defense to pneumonia virus of mice (PVM), which initiates an infection in mice resembling that of respiratory syncytial virus disease in humans. We found that PVM-infected mice expressed IL-21 in lung CD4(+) T cells. Following infection, Il21r(-/-) mice exhibited less lung infiltration by neutrophils than did wild-type (WT) mice and correspondingly had lower levels of the chemokine CXCL1 in bronchoalveolar lavage fluid and lung parenchyma. CD8(+), CD4(+), and γδ T cell numbers were also lower in the lungs of PVM-infected Il21r(-/-) mice than in infected WT mice, with normal Th17 cytokines but diminished IL-6 production in PVM-infected Il21r(-/-) mice. Strikingly, Il21r(-/-) mice had enhanced survival following PVM infection, and moreover, treatment of WT mice with soluble IL-21R-Fc fusion protein enhanced their survival. These data reveal that IL-21 promotes the pathogenic inflammatory effect of PVM and indicate that manipulating IL-21 signaling may represent an immunomodulatory strategy for controlling PVM and potentially other respiratory virus infections.


Assuntos
Interleucinas/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL1/biossíntese , Quimiocina CXCL1/imunologia , Interleucina-6/biossíntese , Interleucina-6/deficiência , Interleucinas/biossíntese , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vírus da Pneumonia Murina/patogenicidade , Receptores de Interleucina-21/imunologia , Células Th17/imunologia
8.
Viruses ; 4(12): 3494-510, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23342367

RESUMO

Pneumonia Virus of Mice (PVM) is related to the human and bovine respiratory syncytial virus (RSV) pathogens, and has been used to study respiratory virus replication and the ensuing inflammatory response as a component of a natural host­pathogen relationship. As such, PVM infection in mice reproduces many of the clinical and pathologic features of the more severe forms of RSV infection in human infants. Here we review some of the most recent findings on the basic biology of PVM infection and its use as a model of disease, most notably for explorations of virus infection and allergic airways disease, for vaccine evaluation, and for the development of immunomodulatory strategies for acute respiratory virus infection.


Assuntos
Modelos Animais de Doenças , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/patologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Animais , Camundongos , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Infecções Respiratórias/imunologia
9.
PLoS Pathog ; 7(11): e1002358, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072972

RESUMO

Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23(-/-) mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23(-/-) mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.


Assuntos
Fatores Quimiotáticos/metabolismo , Células Dendríticas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vírus da Pneumonia Murina/imunologia , Pneumonia Viral/imunologia , Infecções por Pneumovirus/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Quimiocinas , Fatores Quimiotáticos/biossíntese , Células Dendríticas/metabolismo , Mediadores da Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Interferon Tipo I/biossíntese , Interferon Tipo I/deficiência , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/metabolismo , Vírus da Pneumonia Murina/patogenicidade , Pneumonia Viral/metabolismo , Infecções por Pneumovirus/metabolismo , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Carga Viral
10.
Clin Exp Immunol ; 165(1): 19-28, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21501148

RESUMO

Early-life respiratory viral infections are linked to subsequent development of allergic asthma in children. We assessed the underlying immunological mechanisms in a novel model of the induction phase of childhood asthma. BALB/c mice were infected neonatally with pneumonia virus of mice, then sensitized intranasally with ovalbumin following recovery. Animals were challenged with low levels of aerosolized ovalbumin for 4 weeks to induce changes of chronic asthma, then received a single moderate-level challenge to elicit mild acute allergic inflammation. To inhibit the initial induction of a T helper type 2 (Th2) response, we administered neutralizing antibodies against interleukin (IL)-4 or IL-25, then assessed development of airway inflammation and remodelling. Anti-IL-4 administered during chronic challenge prevented development of chronic and acute allergic inflammation, as well as goblet cell hyperplasia/metaplasia, but features of remodelling such as subepithelial fibrosis and epithelial hypertrophy were unaffected. In contrast, anti-IL-25 had limited effects on the airway inflammatory response but prevented key changes of remodelling, although it had no effect on goblet cells. Both antibodies suppressed development of a Th2 response, while anti-IL-25 also promoted a Th17 response. In further experiments, anti-IL-25 was administered in early life alone, and again had limited effects on airway inflammation, but prevented development of airway wall remodelling. We conclude that in this murine model of childhood asthma, administration of anti-IL-4 or anti-IL-25 prevents development of some key features of asthma, suggesting that suppression of development of a Th2 response during the neonatal period or later in childhood could be effective for primary prevention.


Assuntos
Asma/imunologia , Células Caliciformes/metabolismo , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Células Th2/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Alérgenos/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Bloqueadores/administração & dosagem , Asma/fisiopatologia , Asma/prevenção & controle , Células Cultivadas , Criança , Modelos Animais de Doenças , Progressão da Doença , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/patologia , Humanos , Hiperplasia/prevenção & controle , Interleucina-4/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Pneumonia Murina/patogenicidade , Ovalbumina/imunologia , Pneumonia/prevenção & controle , Infecções por Pneumovirus/fisiopatologia , Infecções por Pneumovirus/prevenção & controle , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/patologia
11.
J Virol ; 85(9): 4071-84, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21307191

RESUMO

Infection of mice with pneumonia virus of mice (PVM) provides a convenient experimental pathogenesis model in a natural host for a human respiratory syncytial virus-related virus. Extending our previous work showing that the PVM nonstructural (NS) proteins were pathogenicity factors in mice, we identify both the NS1 and NS2 proteins as antagonists of alpha/beta interferon (IFN-α/ß) and IFN-λ by use of recombinant PVM (rPVM) with single and combined deletions of the NS proteins (ΔNS1, ΔNS2, and ΔNS1 ΔNS2). Wild-type and NS deletion PVMs were evaluated for growth and pathogenesis by infecting knockout mice that lack functional receptors to IFN-α/ß, IFN-λ, or both. The absence of the receptor to IFN-α/ß (IFNAR) or IFN-λ (interleukin-28 receptor α chain [IL-28Rα]) individually did not reverse the attenuated virulence of the NS deletion viruses although loss of IFNAR partially restored replication efficiency. When both receptors were deleted, replication and virulence were largely rescued for rPVM ΔNS1 and were significantly but not completely rescued for rPVM ΔNS2. As for rPVM ΔNS1 ΔNS2, the effect was mostly limited to partial enhancement of replication. This indicates that both IFN-α/ß and IFN-λ contributed to restricting the NS deletion viruses, with the former playing the greater role. Interestingly, the replication and virulence of wild-type PVM were completely unaffected by the presence or absence of functional receptors to IFN-α/ß and IFN-λ, indicating that both systems are strongly suppressed during infection. However, pretreatment of mice with IFN-α/ß was protective against lethal rPVM challenge, whereas pretreatment with IFN-λ delayed but did not prevent disease and, in some cases, reduced mortality. The fact that virulence of rPVM lacking NS2 was not recovered completely when both interferon receptors were deleted suggests that NS2 may have further functions outside the IFN system.


Assuntos
Citocinas/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/veterinária , Doenças dos Roedores/virologia , Proteínas não Estruturais Virais/imunologia , Fatores de Virulência/imunologia , Animais , Deleção de Genes , Histocitoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/patologia , Infecções por Pneumovirus/virologia , Doenças dos Roedores/patologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Replicação Viral
12.
J Immunol ; 186(2): 1151-61, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21169550

RESUMO

The inflammatory response to respiratory virus infection can be complex and refractory to standard therapy. Lactobacilli, when targeted to the respiratory epithelium, are highly effective at suppressing virus-induced inflammation and protecting against lethal disease. Specifically, wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus plantarum or Lactobacillus reuteri were completely protected against lethal infection with the virulent rodent pathogen, pneumonia virus of mice; significant protection (60% survival) persisted for at least 13 wk. Protection was not unique to Lactobacillus species, and it was also observed in response to priming with nonpathogenic Gram-positive Listeria innocua. Priming with live lactobacilli resulted in diminished granulocyte recruitment, diminished expression of multiple proinflammatory cytokines (CXCL10, CXCL1, CCL2, and TNF), and reduced virus recovery, although we have demonstrated clearly that absolute virus titer does not predict clinical outcome. Lactobacillus priming also resulted in prolonged survival and protection against the lethal sequelae of pneumonia virus of mice infection in MyD88 gene-deleted (MyD88(-/-)) mice, suggesting that the protective mechanisms may be TLR-independent. Most intriguing, virus recovery and cytokine expression patterns in Lactobacillus-primed MyD88(-/-) mice were indistinguishable from those observed in control-primed MyD88(-/-) counterparts. In summary, we have identified and characterized an effective Lactobacillus-mediated innate immune shield, which may ultimately serve as critical and long-term protection against infection in the absence of specific antiviral vaccines.


Assuntos
Lactobacillus plantarum/imunologia , Limosilactobacillus reuteri/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/mortalidade , Infecções por Pneumovirus/prevenção & controle , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Administração Intranasal , Animais , Antígenos Virais/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Mucosa Respiratória/virologia , Replicação Viral/imunologia
13.
Virol J ; 7: 320, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078159

RESUMO

BACKGROUND: The innate immune responses of neonates differ dramatically from those of adults. Here we examine the acute inflammatory responses of neonatal and weanling mice infected with pneumonia virus of mice (PVM), a rodent pathogen (family Paramyxoviridae, genus Pneumovirus) that replicates the sequelae of severe respiratory syncytial virus infection. RESULTS: We demonstrate that virus replication proceeds indistinguishably in all age groups (inoculated at 1, 2, 3 and 4 weeks of age), although inflammatory responses vary in extent and character. Some of the biochemical mediators detected varied minimally with age at inoculation. Most of the mediators evaluated demonstrated elevated expression over baseline correlating directly with age at the time of virus inoculation. Among the latter group are CCL2, CCL3, and IFN-γ, all cytokines previously associated with PVM-induced inflammatory pathology in mature mice. Likewise, we detect neutrophil recruitment to lung tissue in all age groups, but recruitment is most pronounced among the older (3 - 4 week old) mice. Interestingly, all mice exhibit failure to thrive, lagging in expected weight gain for given age, including the youngest mice that present little overt evidence of inflammation. CONCLUSIONS: Our findings among the youngest mice may explain in part the phenomenon of atypical or minimally symptomatic respiratory infections in human neonates, which may be explored further with this infection model.


Assuntos
Vírus da Pneumonia Murina/imunologia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/veterinária , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal , Citocinas/biossíntese , Expressão Gênica , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Replicação Viral
14.
BMC Immunol ; 10: 14, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19298652

RESUMO

BACKGROUND: We have shown previously that acute infection with the respiratory pathogen, pneumonia virus of mice (PVM), results in local production of the proinflammatory chemokine, CCL3, and that neutrophil recruitment in response to PVM infection is reduced dramatically in CCL3 -/- mice. RESULTS: In this work, we demonstrate that CCL3-mediated neutrophil recruitment is coordinated by interferon-gamma (IFNgamma). Neutrophil recruitment in response to PVM infection was diminished five-fold in IFNgamma receptor gene-deleted mice, although neutrophils from IFNgammaR -/- mice expressed transcripts for the CCL3 receptor, CCR1 and responded functionally to CCL3 ex vivo. Similarly, in the absence of PVM infection, CCL3 overexpression alone could not elicit neutrophil recruitment in the absence of IFNgamma. Interestingly, although supplemental IFNgamma restored neutrophil recruitment and resulted in a sustained weight loss among CCL3-overexpressing IFNgamma -/- mice, CCL3-mediated neutrophil recruitment alone did not result in the pulmonary edema or respiratory failure characteristic of severe viral infection, suggesting that CCL3 and IFN-gamma together are sufficient to promote neutrophil recruitment but not pathologic activation. CONCLUSION: Our findings reveal a heretofore unrecognized hierarchical interaction between the IFNgamma and CCL3, which demonstrate that IFNgamma is crucial for CCL3-mediated neutrophil recruitment in vivo.


Assuntos
Quimiocina CCL3/metabolismo , Interferon gama/metabolismo , Pulmão/metabolismo , Vírus da Pneumonia Murina/imunologia , Neutrófilos/metabolismo , Infecções por Pneumovirus/imunologia , Animais , Movimento Celular/imunologia , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Perfilação da Expressão Gênica , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/patogenicidade , Neutrófilos/imunologia , Neutrófilos/patologia , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/fisiopatologia , Edema Pulmonar , Receptores CCR1/genética , Receptores CCR1/imunologia , Receptores CCR1/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Receptores de Interferon/metabolismo , Insuficiência Respiratória , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
15.
J Virol ; 83(4): 1969-80, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19052095

RESUMO

Pneumonia virus of mice (PVM) strain 15 causes fatal pneumonia in mice and provides a convenient model for human respiratory syncytial virus pathogenesis and immunobiology. We prepared PVM mutants lacking the genes for nonstructural proteins NS1 and/or NS2. In Vero cells, which lack type I interferon (IFN), deletion of these proteins had no effect on the efficiency of virus growth. In IFN-competent mouse embryo fibroblasts, wild-type (wt) PVM and the DeltaNS1 virus grew efficiently and strongly inhibited the IFN response, whereas virus lacking NS2 was highly attenuated and induced high levels of IFN and IFN-inducible genes. In BALB/c mice, intranasal infection with wt PVM caused overt disease that began on day 6 and was lethal by day 9 postinoculation. In comparison, DeltaNS1 induced transient, reduced disease, and DeltaNS2 and DeltaNS12 caused no disease. Thus, NS1 and NS2 are virulence factors, with NS2 being a major antagonist of the type I IFN system. The pulmonary titers of wt PVM and DeltaNS1 were high on day 3 and increased further by day 6; in addition, expression of IFN and representative proinflammatory cytokines/chemokines and T lymphocyte-related cytokines was undetectable on day 3 but increased dramatically by day 6 coincident with the onset of disease. The titers of DeltaNS2 and DeltaNS12 were somewhat lower on day 3 and decreased further by day 6; in addition, these viruses induced a more circumscribed set of cytokines/chemokines (IFN, interleukin-6 [IL-6], and CXCL10) that were detected on day 3 and had largely subsided by day 6. Lung immunohistology revealed abundant PVM-positive pneumocytes and bronchial and bronchiolar epithelial cells in wt PVM- and DeltaNS1-infected mice on day 6 compared to few PVM-positive foci with DeltaNS2 and DeltaNS12. These results indicate that severe PVM disease is associated with high, poorly controlled virus replication driving the expression of high levels of pulmonary IFN and a broad array of cytokines/chemokines. In contrast, in the absence of NS2, there was an early, transient innate response involving moderate levels of IFN, IL-6, and CXCL10 that restricted virus replication and prevented disease.


Assuntos
Citocinas/biossíntese , Pulmão/patologia , Vírus da Pneumonia Murina/fisiologia , Vírus da Pneumonia Murina/patogenicidade , Proteínas não Estruturais Virais/fisiologia , Fatores de Virulência/fisiologia , Replicação Viral , Animais , Peso Corporal , Linhagem Celular , Citocinas/imunologia , Deleção de Genes , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/imunologia , Índice de Gravidade de Doença , Análise de Sobrevida , Proteínas não Estruturais Virais/genética , Virulência , Fatores de Virulência/genética
16.
J Virol ; 81(17): 9490-501, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17567693

RESUMO

Pneumonia virus of mice (PVM) is a murine relative of human respiratory syncytial virus (HRSV). Here we developed a reverse genetics system for PVM based on a consensus sequence for virulent strain 15. Recombinant PVM and a version engineered to express green fluorescent protein replicated as efficiently as the biological parent in vitro but were 4- and 12.5-fold attenuated in vivo, respectively. The G proteins of HRSV and PVM have been suggested to contribute to viral pathogenesis, but this had not been possible to study in a defined manner in a fully permissive host. As a first step, we evaluated recombinant mutants bearing a deletion of the entire G gene (Delta G) or expressing a G protein lacking its cytoplasmic tail (Gt). Both G mutants replicated as efficiently in vitro as their recombinant parent, but both were nonpathogenic in mice at doses that would otherwise be lethal. We could not detect replication of the Delta G mutant in mice, indicating that its attenuation is based on a severe reduction in the virus load. In contrast, the Gt mutant appeared to replicate as efficiently in mice as its recombinant parent. Thus, the reduction in virulence associated with the Gt mutant could not be accounted for by a reduction in viral replication. These results identified the cytoplasmic tail of G as a virulence factor whose effect is not mediated solely by the viral load. In addition to its intrinsic interest, a recombinant virus that replicates with wild-type-like efficiency but does not cause disease defines optimal properties for vaccine development.


Assuntos
Vírus da Pneumonia Murina/patogenicidade , Fatores de Virulência/genética , Animais , Linhagem Celular , Cricetinae , Deleção de Genes , Genes Reporter , Engenharia Genética , Glicoproteínas/genética , Glicoproteínas/fisiologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/fisiologia , Recombinação Genética , Deleção de Sequência , Análise de Sobrevida , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Virulência/fisiologia , Replicação Viral
17.
Antiviral Res ; 69(2): 53-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337014

RESUMO

In this work we have evaluated the clinical responses of pneumovirus-infected mice to combination therapy with the antiviral agent, ribavirin, and the CysLT1 cysteinyl leukotriene receptor antagonist, montelukast. We observed substantial virus replication in our mouse model of pneumovirus infection and significant accumulation of cysteinyl leukotrienes in lung tissue, the latter detected at levels that correlate directly with granulocyte recruitment to the airways. While administration of the nucleoside analog, ribavirin, reduced virus replication approximately 2,000-fold, the clinical outcomes as measured by morbidity and mortality, in response to ribavirin monotherapy were indistinguishable from those of the no-treatment controls. Similarly, montelukast therapy alone did not reduce granulocyte recruitment nor did it improve the clinical outcome. However, combined therapy with ribavirin and montelukast resulted in a significant reduction in morbidity and a substantial reduction in mortality (50% survival at t = 14 days and onward, compared to 10-20% survival in response to montelukast alone or to ribavirin alone, respectively, p < 0.01). These findings define further the independent contributions made by virus replication and by the ensuing inflammatory response to the detrimental sequelae of pneumovirus infection in vivo.


Assuntos
Acetatos/uso terapêutico , Antivirais/uso terapêutico , Bronquiolite Viral/tratamento farmacológico , Antagonistas de Leucotrienos/uso terapêutico , Vírus da Pneumonia Murina/patogenicidade , Quinolinas/uso terapêutico , Ribavirina/uso terapêutico , Acetatos/administração & dosagem , Animais , Antivirais/administração & dosagem , Bronquiolite Viral/mortalidade , Bronquiolite Viral/virologia , Ciclopropanos , Cisteína/antagonistas & inibidores , Modelos Animais de Doenças , Quimioterapia Combinada , Humanos , Antagonistas de Leucotrienos/administração & dosagem , Leucotrienos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Pneumonia Murina/efeitos dos fármacos , Vírus da Pneumonia Murina/fisiologia , Infecções por Pneumovirus/tratamento farmacológico , Infecções por Pneumovirus/mortalidade , Infecções por Pneumovirus/virologia , Quinolinas/administração & dosagem , Ribavirina/administração & dosagem , Sulfetos , Resultado do Tratamento , Replicação Viral
18.
Virus Genes ; 30(2): 237-49, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15744580

RESUMO

Pneumonia virus of mice (PVM) is an enveloped RNA-containing virus of Family Paramyxoviridae. Sequences had been determined previously for a number of PVM genes, although these represented cloned cDNAs rather than consensus sequences. Sequences were not available for the 3' -leader and 5' -trailer regions that constitute the genome termini or for the large polymerase L gene that accounts for 43% of the genome. Also, the available sequences were from an attenuated variant of strain 15, whereas the present study analyzed the version of strain 15 that is available from the American Type Culture Collection (ATCC) and is highly virulent in mice. Analysis of unclosed RT-PCR products yielded a complete consensus sequence of 14,886 nt (GenBank accession number AY729016). Of the regions for which sequences had been previously reported for the non-pathogenic strain, there were 13 nucleotide differences and 10 amino acid differences compared to the present consensus sequence for the virulent isolate. The various genes of PVM shared 29-62% nucleotide sequence identity and 10-60% amino acid sequence identity with human or bovine respiratory syncytial virus (HRSV and BRSV), its closest relatives.


Assuntos
Genoma Viral , Vírus da Pneumonia Murina/genética , RNA Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Mapeamento Cromossômico , Sequência Consenso , DNA Viral/genética , Humanos , Camundongos , Dados de Sequência Molecular , Vírus da Pneumonia Murina/patogenicidade , Vírus Sincicial Respiratório Bovino/genética , Vírus Sincicial Respiratório Humano/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Proteínas Virais/genética
19.
J Virol ; 78(23): 13362-5, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15542688

RESUMO

Prototypic strain 15 of pneumonia virus of mice (PVM) has been described as being nonpathogenic in mice, in contrast to the mouse-passaged, highly virulent strain J3666. Previous sequence analysis also indicated that strain 15 encodes an attachment G protein that is truncated at the amino terminus, which for the amino terminally anchored protein deletes the cytoplasmic tail. However, we found that PVM strain 15 obtained from the American Type Culture Collection was highly virulent in mice and was essentially indistinguishable on that basis from strain J3666. Sequence analysis showed that this preparation of virus encodes a G protein with an intact cytoplasmic tail: the truncated predicted protein in the previous sequence appeared to be due to a single nucleotide insertion that disrupted the upstream end of the open reading frame and shifted the translational start site to the next downstream AUG. Taken together, the two studies indicate that strain 15 is an inherently virulent strain but that a nonpathogenic variant that was generated during passage in vitro and encodes a truncated G protein exists. Interestingly, the majority sequence of strain J3666 was found to encode a G protein with an extended cytoplasmic tail, suggesting that there is the potential for considerable plasticity in the cytoplasmic tail of the G protein of PVM.


Assuntos
Vírus da Pneumonia Murina/patogenicidade , Animais , Glicoproteínas/genética , Glicoproteínas/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Virulência
20.
Antiviral Res ; 59(3): 181-91, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12927308

RESUMO

The mouse eosinophil-associated ribonucleases (mEars) are species specific, divergent orthologs of the human antiviral RNase A ribonucleases, eosinophil-derived neurotoxin (RNase 2) and eosinophil cationic protein (RNase 3). We show here that mEar 2 is also an antiviral ribonuclease, as micromolar concentrations promote a approximately sixfold reduction in the infectivity of pneumonia virus of mice (PVM) for target respiratory epithelial cells in vitro. Although initially identified as a component of eosinophilic leukocytes, mEar 2 mRNA and protein were also detected in lung tissue accompanied by enzymatically active mEar 2 in bronchoalveolar lavage fluid (BALF). At t=3 days post-inoculation with PVM (strain J3666), we observed the characteristic inflammatory response accompanied by diminished expression of total mEar mRNA and protein in lung tissue and a corresponding fivefold drop in ribonuclease activity in BALF. No change in mEar expression was observed in response to infection with PVM strain 15, a replication-competent strain of PVM that does not elicit a cellular inflammatory response. However, mEar expression is not directly dependent on inflammation per se, as diminished expression of mEar mRNA and BAL ribonuclease activity were also observed in PVM-infected, inflammation-deficient, MIP-1alpha -/- mice. We propose that this mechanism may represent a novel virus-mediated evasion strategy, with a mechanism that is linked in some fashion to virus-specific pathogenicity.


Assuntos
Antivirais/metabolismo , Eosinófilos/enzimologia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/fisiopatologia , Ribonucleases/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Eosinófilos/imunologia , Inflamação/imunologia , Pulmão/enzimologia , Pulmão/imunologia , Camundongos , Infecções por Pneumovirus/virologia , RNA Mensageiro/metabolismo , Ribonucleases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...